Spatio-temporal human action localisation and instance segmentation in temporally untrimmed videos

نویسندگان

  • Suman Saha
  • Gurkirt Singh
  • Michael Sapienza
  • Philip H. S. Torr
  • Fabio Cuzzolin
چکیده

Current state-of-the-art human action recognition is focused on the classification of temporally trimmed videos in which only one action occurs per frame. In this work we address the problem of action localisation and instance segmentation in which multiple concurrent actions of the same class may be segmented out of an image sequence. We cast the action tube extraction as an energy maximisation problem in which configurations of region proposals in each frame are assigned a cost and the best action tubes are selected via two passes of dynamic programming. One pass associates region proposals in space and time for each action category, and another pass is used to solve for the tube’s temporal extent and to enforce a smooth label sequence through the video. In addition, by taking advantage of recent work on action foreground-background segmentation, we are able to associate each tube with classspecific segmentations. We demonstrate the performance of our algorithm on the challenging LIRIS-HARL dataset and achieve a new state-of-the-art result which is 14.3 times better than previous methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Untrimmed Video Classification for Activity Detection: submission to ActivityNet Challenge

Current state-of-the-art human activity recognition is focused on the classification of temporally trimmed videos in which only one action occurs per frame. We propose a simple, yet effective, method for the temporal detection of activities in temporally untrimmed videos with the help of untrimmed classification. Firstly, our model predicts the top k labels for each untrimmed video by analysing...

متن کامل

ZHENHENG YANG, JIYANG GAO, RAM NEVATIA: SPATIO-TEMPORAL ACTION DETECTION WITH CASCADE PROPOSAL AND LOCATION ANTICIPATION1 Spatio-Temporal Action Detection with Cascade Proposal and Location Anticipation

In this work, we address the problem of spatio-temporal action detection in temporally untrimmed videos. It is an important and challenging task as finding accurate human actions in both temporal and spatial space is important for analyzing large-scale video data. To tackle this problem, we propose a cascade proposal and location anticipation (CPLA) model for frame-level action detection. There...

متن کامل

Spatio-Temporal Action Detection with Cascade Proposal and Location Anticipation

In this work, we address the problem of spatio-temporal action detection in temporally untrimmed videos. It is an important and challenging task as finding accurate human actions in both temporal and spatial space is important for analyzing large-scale video data. To tackle this problem, we propose a cascade proposal and location anticipation (CPLA) model for frame-level action detection. There...

متن کامل

Spatio-Temporal Segmentation with Depth-Inferred Videos of Static Scenes

Extracting spatio-temporally consistent segments from a video sequence is a challenging problem due to the complexity of color, motion and occlusions. Most existing spatio-temporal segmentation approaches rely on pairwise motion estimation, which have inherent difficulties in handling large displacement with significant occlusions. This paper presents a novel spatio-temporal segmentation method...

متن کامل

Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos

In this work, we propose an approach to the spatiotemporal localisation (detection) and classification of multiple concurrent actions within temporally untrimmed videos. Our framework is composed of three stages. In stage 1, appearance and motion detection networks are employed to localise and score actions from colour images and optical flow. In stage 2, the appearance network detections are b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1707.07213  شماره 

صفحات  -

تاریخ انتشار 2017